Cathodic Protection Calculator Mobile App

Version 1.00

Published 10/27/2024

© 2024

Cathodic Protection Calculator

Cathodic Protection Testing Reference Electrodes Soil Resistivity Structures Anodes **Rectifier Sizing Interference Analysis DC** Attenuation Calculations **Miscellaneous Calculations** Extras

Cathodic Protection Testing

Current Shunt Conversions Current Requirement Testing Current Span Testing Coating Conductance Testing Panhandle Eastern Casing Isolation Testing CIS Metallic IR Current Span Calculation DCVG Indication (%IR) Calculation Hot Spot Electrical Survey Calculations

Current Shunt Conversions

Options: Resistance ¹, Voltage/Amperage ²

Inputs

Measured Voltage Shunt Resistance Rating ¹ Shunt Voltage Rating ² Shunt Amperage Rating ²

Outputs Measured Current Units Volts, Millivolts Ohms, Milliohms Volts, Millivolts Amps, Milliamps Units Amps, Milliamps

Current Requirement Testing

Inputs

Test Current, C Native Potential, V Polarized Potential, V

Outputs

Required Current (To Meet 100 mV Polarization Criteria)

Required Current (To Meet -850 mV Polarized Potential Criteria)

Units

Amps, Milliamps Volts, Millivolts Volts, Millivolts

Units

Amps, Milliamps

Amps, Milliamps

Current Span Testing

Inputs

Test Span Current, C Span Voltage With Current Off, V Span Voltage With Current On, V

Outputs

Span Resistance

Units

Amps, Milliamps Volts, Millivolts Volts, Millivolts

Units Ohms, Milliohms

Coating Conductance Testing

Inputs
Current Span Test Station 1
Current 1 On, I1
Current 1 Off, I1
Potential 1 with Current On, V1
Potential 1 with Current Off, V1
Current Span Test Station 2
Current 2 On, I2
Current 2 Off, I2
Potential 2 with Current On, V2
Potential 2 with Current Off, V2
Soil Resistivity
Pipeline Dimensions
Pipeline Length, L
Pipeline Diameter, D

Outputs

Coating Conductance (With Respect to 1000 ohm-cm Soil Resistivity)

Units

Amps, Milliamps Amps, Milliamps Volts, Millivolts Volts, Millivolts

Amps, Milliamps Amps, Milliamps Volts, Millivolts Volts, Millivolts Ohm-Centimeter, Ohm-Foot

Meters, Feet Centimeters, Inches

Units

Siemens/Meter², Siemens/Foot²

AVERAGE SPECIFIC COATING CONDUCTANCE (@ 1000 OHM-CM)			
Long Pipelines with Few Fittings	g' or 1/r' (siemens/ft²)	g' or 1/r' (siemens/m²)	
Quality of Work			
Excellent	< 1 x 10 ⁻⁵	< 1 x 10 ⁻⁴	
Good	1 x 10 ⁻⁵ to 5 x 10 ⁻⁵	1 x 10 ⁻⁴ to 5 x 10 ⁻⁴	
Fair	5 x 10 ⁻⁵ to 1 x 10 ⁻⁴	5 x 10 ⁻⁴ to 1 x 10 ⁻³	
Poor	> 1 x 10 ⁻⁴	> 1 x 10 ⁻³	
Bare Pipe	4 x 10 ⁻³ to 2 x 10 ⁻²	4 x 10 ⁻² to 2 x 10 ⁻¹	
(2" to 12")			
(5 cm to 30 cm)			
Gas or Water Distribution with Many Fittings	g' or 1/r' (siemens/ft²)	g' or 1/r' (siemens/m²)	
Quality of Work			
Excellent	< 5 x 10 ⁻⁵	< 5 x 10 ⁻⁴	
Good	5 x 10 ⁻⁵ to 1 x 10 ⁻⁴	5 x 10 ⁻⁴ to 1 x 10 ⁻³	
Fair	1 x 10 ⁻⁴ to 5 x 10 ⁻⁴	1 x 10 ⁻³ to 5 x 10 ⁻³	
Poor	> 5 x 10 ⁻⁴	> 5 x 10 ⁻³	
Bare Pipe	4 x 10 ⁻³ to 2 x 10 ⁻²	4 x 10 ⁻² to 2 x 10 ⁻¹	
(2" to 12")			
(5 cm to 30 cm)			

Panhandle Eastern Casing Isolation Testing

Inputs

Test Current, C

Pipeline Potential With Current Off, V1 Pipeline Potential With Current On, V1 Casing Potential With Current Off, V2 Casing Potential With Current On, V2

Outputs

Resistance (If Resistance <= 0.08 ohms, metallic short exists)

Units

Amps, Milliamps Volts, Millivolts Volts, Millivolts Volts, Millivolts Volts, Millivolts

Units

Ohms, Milliohms

CIS Metallic IR Current Span Calculation

Options: Carbon Steel

Inputs

Metallic IR (Far Ground – Near Ground) Distance Between Test Stations, L Pipeline Outer Diameter, D Pipeline Thickness, t

Outputs

Span Current

Units Volts, Millivolts Meters, Feet Centimeters, Inches Centimeters, Inches

Units

Amps, Milliamps

DCVG Indication Severity (%IR) Calculation

Inputs

Over the Line to Remote Earth Potential, Va

DCVG Signal Amplitude to Remote Earth at Test Station 1, V1

DCVG Signal Amplitude to Remote Earth at Test Station 2, V2

Distance Measurement of Test Station 1 (This is 0 at the beginning of the survey)

Distance Measurement of Test Station 2, d2

Distance Measurement of Indication from Test Station 1, d1

Outputs

Indication Severity (%IR)

Units

Volts, Millivolts

Volts, Millivolts

Volts, Millivolts

Meters, Feet

Meters, Feet

Meters, Feet

Units Percent (%)

Anomaly Rating	% IR Measurement
Noteworthy	0% IR to 15% IR
Minor	16% IR to 35% IR
Moderate	36% IR to 60% IR
Severe	61% IR to 100% IR

Hot Spot Electrical Survey Calculations

Options: Carbon Steel

Inputs

Largest Negative Side Drain Potential, V

Soil Resistivity at Pipe Depth

Pipe Depth, d

Estimated Anodic Surface Area, SA (1 ft² surface area normally used as default)

Outputs

Corrosion Current (Corrosion Factor)

Corrosion Rate

Units

Volts, Millivolts

Ohm-Centimeter, Ohm-Foot Meters, Feet

Meter², Feet²

Units

Milliamps

Millimeters/Year, Mils/Year

Reference Electrodes

Reference Electrode Conversions Reference Electrode Temperature Correction

Reference Electrode Conversions

Inputs

Units

Convert From (Reference Electrode Type):CuSO4, AgCl, Zinc, Calomel, PalladiumPotential MeasurementVolts, N

Volts, Millivolts

Outputs

Units

Convert To (Reference Electrode Type): CuSO4, AgCl, Zinc, Calomel, Palladium Potential Measurement Volts, Millivolts

Reference Electrode Temperature Correction

Options: To 25° Celsius, From 25° Celsius

Inputs

Units

Reference Electrode Type:
CuSO4, Zinc, Calomel, AgCl(SJ), AgCl(LJ Sat), AgCl(LJ 0.1N)Potential MeasurementVolts, MillivoltsReference Electrode TemperatureCelsius, Fahrenheit

Outputs Potential Measurement **Units** Volts, Millivolts

Soil Resistivity

Wenner Single Layer Soil Resistivity Schlumberger Single Soil Layer Soil Resistivity Barnes Multiple Soil Layers (Wenner) Convert Soil Conductivity to Resistivity

Wenner Single Layer Soil Resistivity

Options: Resistance ¹, Voltage/Amperage ²

Inputs	Units
Resistance ¹	Ohms, Milliohms
Voltage ²	Volts, Millivolts
Amperage ²	Amps, Milliamps
Pin Spacing, a	Meters, Feet
Outputs	Units
Soil Resistivity	Ohm-Centimeter.

Soil Resistivity (ohm-cm) Corrosivity Rating	
> 20,000	Essentially Non-Corrosive
10,000 to 20,000	Mildly Corrosive
5,000 to 10,000	Moderately Corrosive
3,000 to 5,000	Corrosive
1,000 to 3,000	Highly Corrosive
< 1,000	Extremely Corrosive

Ohm-Foot

Schlumberger Single Layer Soil Resistivity

Options: Resistance ¹, Voltage/Amperage ²

InputsLResistance 1CVoltage 2NAmperage 2AVoltage Pin Spacing, aNCurrent Pin Spacing, L (c+a+c)N

Outputs Soil Resistivity Units Ohms, Milliohms Volts, Millivolts Amps, Milliamps Meters, Feet Meters, Feet

Units Ohm-Centimeter, Ohm-Foot

Soil Resistivity (ohm-cm)	Corrosivity Rating
> 20,000	Essentially Non-Corrosive
10,000 to 20,000	Mildly Corrosive
5,000 to 10,000	Moderately Corrosive
3,000 to 5,000	Corrosive
1,000 to 3,000	Highly Corrosive
< 1,000	Extremely Corrosive

Barnes Multiple Soil Layers (Wenner)

Options: Wenner

Inputs Layer (n) Resistance Pin Spacing, a Layer (n+1) Resistance Pin Spacing, a

Outputs Layer (n)-(n+1) Resistivity Units

Ohms, Milliohms Meters, Feet

Ohms, Milliohms Meters, Feet

Units Ohm-Centimeter, Ohm-Foot

Soil Resistivity (ohm-cm)	Corrosivity Rating
> 20,000	Essentially Non-Corrosive
10,000 to 20,000	Mildly Corrosive
5,000 to 10,000	Moderately Corrosive
3,000 to 5,000	Corrosive
1,000 to 3,000	Highly Corrosive
< 1,000	Extremely Corrosive

Convert Soil Conductivity to Resistivity

Options: Soil Resistivity ¹, Soil Conductivity ²

Inputs	Units
Soil Conductivity ¹	Decisiemens/Meter, Decisiemens/Foot
Soil Resistivity ²	Ohm-Centimeter, Ohm-Foot
Outputs	Units
Outputs Soil Resistivity ¹	Units Ohm-Centimeter, Ohm-Foot

Source: USDA Web Soil Survey website

Structures

Structure Current Requirements Pipeline Tank Structure Resistance/Conductance Pipeline/Cable Linear Resistance Pipeline Conductance

Pipeline Current Requirements

Inputs

Units

Units

Current Requirement Pipeline Length, L Pipeline Diameter, D Percent Coating Efficiency

Outputs

Cathodic Protection Current

Milliamps/Meter², Milliamps/Foot² Meters, Feet Centimeters, Inches Percent (%)

Amps, Milliamps

D)

Tank Current Requirements

Inputs

Units

Current Requirement Tank Height, H Tank Diameter, D Percent Coating Efficiency

Outputs

Cathodic Protection Current (Tank Bottom & Shell)

Cathodic Protection Current (Tank Bottom Only)

Cathodic Protection Current (Tank Bottom, Shell & Top) Milliamps/Meter², Milliamps/Foot² Meters, Feet Meters, Feet Percent (%)

Units

Amps, Milliamps

Amps, Milliamps

Amps, Milliamps

Pipeline/Cable Linear Resistance

Options: Pipeline/Carbon Steel ¹, Cable/Copper ²

Inputs

Pipeline Length, L¹ Pipeline Outer Diameter, D¹ Pipeline Inner Diameter, D¹

Cable Length, L² Cable Diameter, D²

Outputs Resistance

Units

Meters, Feet

Centimeters, Inches

Centimeters, Inches

Meters, Feet Centimeters, Inches

Units Ohms, Milliohms

Pipeline Conductance

Inputs

Soil Resistivity Pipeline Length, L Pipeline Diameter, D Pipeline Depth, d Pipeline Coating Efficiency

Outputs

Conductance (to Remote Earth) Resistance (to Remote Earth)

Units Ohm-Centimeters, Ohm-Foot Meters, Feet Centimeters, Inches Meters, Feet Percent (%)

Units

Siemens, Millisiemens Ohms, Milliohms

Anodes

Anode Resistance Anode Weight/Lifespan Anode Current Density Galvanic Anode Current Output

Anode Resistance

Horizontal Anodes Vertical Anodes Tank Anodes Internal Vessel Anodes Marine Anodes

Horizontal Anodes Resistance

Single Horizontal Anode Resistance Multiple Horizontal Anodes Resistance Continuous Horizontal Anode Resistance Linear/Ribbon Anode Resistance

Single Horizontal Anode Resistance

Options: Resistance ¹, Soil Resistivity ²

Inputs Soil Resistivity ¹ Resistance ² Anode Backfill Length, L Anode Backfill Diameter, D Anode Depth, d

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Meters, Feet

Outputs

Units

Ohms, Milliohms

Shallow Depth: Anode Depth << Anode Length, Anode Length >> Anode Diameter

Resistance¹

Soil Resistivity²

Deep Depth: Anode Depth >> Anode Length

Resistance¹

Soil Resistivity²

Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

Ohm/Centimeter, Ohm/Foot

Multiple Horizontal Anodes Resistance

Options: Resistance ¹ , Soil Resistivity ²

Inputs

Soil Resistivity ¹ Resistance ² Anode Backfill Length, L Anode Backfill Diameter, D Anode Depth, d Anode Spacing (Center-to-Center), s Number of Anodes

Units

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Meters, Feet Meters, Feet Number

Outputs

Shallow Depth: Anode Depth << Anode Length, Anode Length >> Anode Diameter Resistance ¹ Ohms, Milliohms

Soil Resistivity ²

Deep Depth: Anode Depth >> Anode Length

Resistance ¹

Soil Resistivity²

Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

© ell ENGINEERING

Continuous Horizontal Anode Resistance

Options: Resistance ¹, Soil Resistivity ²

Inputs Soil Resistivity ¹ Resistance ² Anode Backfill Length, L Anode Backfill Diameter, D Anode Depth, d

Outputs

Resistance ¹ Soil Resistivity ² Units Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Meters, Feet Units Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

Linear/Ribbon Anode Resistance

Options: Resistance ¹, Soil Resistivity ²

Inputs Soil Resistivity ¹ Resistance ² Anode Backfill Length, L Anode Backfill Diameter, D Anode Depth, d

Outputs

Resistance ¹ Soil Resistivity ²

Units Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Meters, Feet Units Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

Vertical Anodes Resistance

Single Vertical Anode Resistance Multiple Vertical Anodes Resistance Deep Anode Groundbed Resistance

Single Vertical Anode Resistance

Options: Resistance ¹, Soil Resistivity ²

Inputs

Soil Resistivity ¹ Resistance ² Anode Backfill Length, L Anode Backfill Diameter, D

Outputs

Shallow Depth

Resistance¹

Soil Resistivity²

Deep Depth: Anode Depth >> Anode Length

Resistance¹

Soil Resistivity²

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches

Units

Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

Multiple Vertical Anodes Resistance

Ohm/Foot

Options: Resistance ¹, Soil Resistivity ²

Inputs	Units
Soil Resistivity ¹	Ohm/Centimeter, Oh
Resistance ²	Ohms, Milliohms
Anode Backfill Length, L	Meters, Feet
Anode Backfill Diameter, D	Centimeters, Inches
Anode Depth, d	Meters, Feet
Anode Spacing (Center-to-Center), s	Meters, Feet
Number of Anodes	Number

Outputs

No Crowding Effect: Anode Spacing >> Anode Length

Resistance¹

Soil Resistivity²

Crowding Effect: Anode Spacing < 10 * Anode Length

Resistance¹

Soil Resistivity²

Units

Ohms, Milliohms

Ohm/Centimeter, Ohm/Foot

Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

Deep Anode Groundbed Resistance

Options: Resistance ¹, Soil Resistivity ²

Inputs

Soil Resistivity ¹ Resistance ² Anode Backfill Length, L Anode Backfill Diameter, D

Outputs

Resistance ¹ Soil Resistivity ² Units
Ohm/Centimeter, Ohm/Foot
Ohms, Milliohms
Meters, Feet
Centimeters, Inches
Units
Ohms, Milliohms
Ohms, Milliohms

Tank Anodes Resistance

Undertank Ribbon Anode Resistance Internal Tank Anode String (1-3) Resistance Internal Tank Anode String (3+) Resistance

Undertank Ribbon Anode Resistance

Options: Resistance ¹, Soil Resistivity ²

Inputs

Soil Resistivity ¹ Resistance ² Anode Length, L Anode Diameter, D Anode to Tank Bottom Distance, d

Outputs

Resistance ¹ Soil Resistivity ²

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Meters, Feet Units Ohms, Milliohms

Units

Ohm/Centimeter, Ohm/Foot

Internal Tank Anode String (1-3) Resistance

Options: Resistance ¹, Liquid Resistivity ²

Inputs Liquid Resistivity ¹ Resistance ² Anode Length, L Anode Diameter, D Tank Diameter, d

Outputs

Resistance ¹ Liquid Resistivity ²

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Meters, Feet

Internal Tank Anode String (3+) Resistance

Options: Resistance ¹, Liquid Resistivity ²

Inputs

Liquid Resistivity ¹

Resistance²

Anode Length, L

Diameter of Anode String Array, D

Tank Diameter, d

Anode Number Correction Factor

Resistance Corrosion Factor [Use if (Anode Length/Anode Diameter) < 100]

Outputs

Resistance¹

Liquid Resistivity²

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Meters, Feet Number Number

Units Ohms, Milliohms Ohm/Centimeter, Ohm/Foot

© ell ENGINEERING

Internal Vessel Anodes Resistance

Bayonet (Cylindrical) Anode Resistance Spherical Anode Resistance

Bayonet (Cylindrical) Anode Resistance

Options: Resistance ¹, Liquid Resistivity ²

Inputs Liquid Resistivity ¹ Resistance ² Anode Length, L Anode Diameter, D

Outputs Resistance ¹ Liquid Resistivity ²

Units Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches

Units

Spherical Anode Resistance

Options: Resistance ¹, Liquid Resistivity ²

Inputs

Liquid Resistivity ¹ Resistance ² Anode Diameter, D

Outputs

Resistance ¹ Liquid Resistivity ²

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Centimeters, Inches

Marine Anodes Resistance

Pipeline Bracelet Anode Resistance Stand-Off Anode Resistance Flush Mounted Anode Resistance

Pipeline Bracelet Anode Resistance

Options: Resistance ¹ , Liquid Resistivity ²

Inputs
Liquid Resistivity ¹
Resistance ²
Anode Length, L
Anode Inner Diameter, D
Anode Thickness, t

Outputs

Resistance ¹ Liquid Resistivity ² Units Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Centimeters, Inches

Units

Stand-Off Anode Resistance

Options: Resistance ¹, Liquid Resistivity ²

Options: Cylindrical ³, Rectangular ⁴, Trapezoidal ⁵

Inputs

Liquid Resistivity ¹ Resistance ² Anode Length, L Anode Diameter, D ³ Anode Width, W ⁴ Anode Width (Small), W1 ⁵ Anode Width (Large), W2 ⁵ Anode Height, H

Outputs

Resistance ¹ Liquid Resistivity ²

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Meters, Feet Centimeters, Inches Centimeters, Inches Centimeters, Inches Centimeters, Inches Centimeters, Inches

Units

Flush Mounted Anode Resistance

Options: Resistance ¹, Liquid Resistivity ² **Options:** Circular ³, Rectangular ⁴

Inputs Liquid Resistivity ¹ Resistance ² Anode Diameter, D ³ Anode Length, L ⁴ Anode Width, W ⁴ Anode Thickness, t

Outputs

Resistance ¹ Liquid Resistivity ²

Units

Ohm/Centimeter, Ohm/Foot Ohms, Milliohms Centimeters, Inches Meters, Feet Centimeters, Inches Centimeters, Inches

Units

Anode Weight/Lifespan

Anode Weight/Lifespan Anode Groundbed Backfill Weight

Anode Weight/Lifespan

Options: Weight ¹, Lifespan ²

Inputs Lifespan ¹ Anode Weight ² Cathodic Protection Current Theoretical Consumption Rate Efficiency Utilization Factor

Outputs Anode Weight ¹ Lifespan ² Units Years Kilograms, Pounds Amps, Milliamps Kilograms/Amp-Year, Pounds/Amp-Year Percent (%) Number Units Kilograms, Pounds Years

Anode Groundbed Backfill Weight

Options: Horizontal Anode¹, Vertical Anode²

Inputs

Backfill Material Bulk Density Anode Trench Length ¹ Anode Trench Width ¹ Number of Trenches ¹ Number of Anodes per Trench ¹ Anode Hole Length ² Anode Hole Diameter ² Number of Holes ² Number of Anodes per Hole ² Anode Ingot Length Anode Ingot Diameter

Outputs

Backfill Weight

Units

Grams/Centimeter³, Pounds/Feet³ Meters, Feet Meters, Feet Number Meters, Feet Centimeters, Inches Number Number Meters, Feet Centimeters, Inches

Units

Kilograms, Pounds

Backfill Type	Bulk Density (lb/ft3)
Coke Breeze	
Loresco SW	54
Loresco SWK	70
Loresco SWS	68
Loresco DW1	74
Loresco SC2	74
Loresco SC3	74
Loresco RS3	68
Loresco EnviroCoke IV	65
Loresco FlexFill	68
Loresco PermaPlug	70
Loresco PowerFill	74
Loresco PowerSet	65
Bentonite	72

Anode Current Density

Options: Anode Material

Options: Cylindrical/Circular¹, Rectangular², Trapezoidal³, Spherical⁴

Inputs Cathodic Protection Current

Anode Length, L ^{1, 2, 3} Anode Diameter, D ^{1, 4} Anode Width, W ² Anode Width (Small), W1 ³ Anode Width (Large), W2 ³ Anode Height, H ^{2, 3}

Outputs

Current Density

Units Amps, Milliamps Meters, Feet Centimeters, Inches Centimeters, Inches Centimeters, Inches Centimeters, Inches Centimeters, Inches

Units

Amps/Meter², Amps/Foot²

Anode / Backfill Material	Environment	Consumption Rate (pounds/amp-year)	Efficiency	Maximum Allowable Current Density (amps/meter²)
Steel	Soil / Fresh Water	7.63		5.00
High Silicon Cast Iron	Soil / Fresh Water	2.20	85%	10.80
Graphite	Soil / Fresh Water	2.20	85%	10.00
Platinized Titanium & Niobium	Soil / Fresh Water	2.60 * 10^-5	85%	
Mixed Metal Oxide (MMO)	Soil / Fresh Water	< 2.20 * 10^-6		
Coke Breeze	Soil / Fresh Water			1.60

Anode Current Density

Options: Backfill Material Options: Cylindrical ¹, Rectangular ²

Inputs	Units
Cathodic Protection Current	Amps, Milliamps
Backfill Length, L	Meters, Feet
Backfill Diameter, D ¹	Centimeters, Inches
Anode Width, W ²	Centimeters, Inches
Anode Height, H ²	Centimeters, Inches
Outputs	Units
Current Density	Amps/Meter ² , Amps/Foot ²

Anode / Backfill Material	Environment	Consumption Rate (pounds/amp-year)	Efficiency	Maximum Allowable Current Density (amps/meter²)
Steel	Soil / Fresh Water	7.63		5.00
High Silicon Cast Iron	Soil / Fresh Water	2.20	85%	10.80
Graphite	Soil / Fresh Water	2.20	85%	10.00
Platinized Titanium & Niobium	Soil / Fresh Water	2.60 * 10^-5	85%	
Mixed Metal Oxide (MMO)	Soil / Fresh Water	< 2.20 * 10^-6		
Coke Breeze	Soil / Fresh Water			1.60

Galvanic Anode Current Output

Options: HP Magnesium, SP Magnesium, Zinc, Aluminum

Inputs

Resistance

Native Potential

Outputs

Current Output (To Start Polarization from Native Potential)

Current Output (To Maintain -850 mV Polarized Potential) Units

Ohms, Milliohms Volts, Millivolts

Units

Amps, Milliamps

Amps, Milliamps

Rectifier Sizing

Minimum Required DC Rectifier Voltage Minimum Required AC Input Amperage

Minimum Required DC Rectifier Voltage

Inputs

Cathodic Protection Current

Total Resistance

Anode Resistance

Structure Resistance

Structure Header Resistance

Anode Header Resistance

Safety Factor

Outputs

DC Rectifier Voltage (Without 2 Volt Back Voltage)

DC Rectifier Voltage (With 2 Volt Back Voltage) Units Amps, Milliamps Ohms, Milliohms Ohms, Milliohms Ohms, Milliohms Ohms, Milliohms Number

Units

Volts, Millivolts

Volts, Millivolts

Minimum Required AC Input Amperage

Inputs

AC Input Voltage DC Output Voltage DC Output Amperage Power Factor Conversion Efficiency

Outputs

AC Input Amperage (Single Phase)

AC Input Amperage (Three Phase)

Units

Volts, Millivolts Volts, Millivolts Amps, Milliamps Number Percent (%)

Units

Amps, Milliamps

Amps, Milliamps

Interference Analysis

General

Coating Holiday / Coupon Current Density **DC Interference Analysis Voltage Rise Analysis Time Until Penetration Resistance Bond Sizing AC Interference Analysis AC Current Density Approximation Soil Arcing Distance**

Coating Holiday / Coupon Current Density

Options: Current ¹, Voltage/Resistance ²

Inputs Current ¹ Voltage ² Resistance ² Holiday Surface Area

Outputs

Current Density (Per Square Meter)

Current Density (Per Square Centimeter)

Current Density (Per Square Foot) Units Amps, Milliamps Volts, Milliamps Ohms, Milliohms Centimeter² , Inch²

Units

Amps/Meter², Milliamps/Meter²

Amps/Centimeter², Milliamps/Centimeter²

Amps/Foot², Milliamps/Foot²

Voltage Rise Analysis

Options: Horizontal Anode, Vertical Anode

Inputs Distance From Anode Soil Resistivity Anode Length Anode Resistance Cathodic Protection Current

Outputs

Voltage Rise at Distance Voltage Rise Percent Units Meters, Feet Ohm-Centimeter, Ohm-Foot Meters, Feet Ohms, Milliohms Amps, Milliamps

Units

Volts, Millivolts Percent (%)

Time Until Penetration

Options: Carbon Steel

Inputs

Current Density Soil Resistivity at Pipe Depth

Outputs

Corrosion Rate Time Until Penetration

Units

Amps/Meter², Amps/Foot² Millimeters, Inches

Units

Millimeters/Year, Mils/Year Years

Resistance Bond Sizing

Inputs

Rectifier Current, C

Initial Potential of Line 1 at Crossing with Rectifier On and Temporary Bond Open-Circuited, V1(on, ioc)

Initial Potential of Line 1 at Crossing with Rectifier Off and Temporary Bond Open-Circuited, V1(off, ioc)

Initial Potential of Line 2 at Crossing with Rectifier On and Temporary Bond Open-Circuited, V2(on, ioc)

Initial Potential of Line 2 at Crossing with Rectifier Off and Temporary Bond Open-Circuited, V2(off, ioc)

Temporary Bond Current, I(b,t)

Initial Potential of Line 1 at Crossing with Rectifier On and Temporary Bond Close-Circuited, V1(on, icc)

Initial Potential of Line 2 at Crossing with Rectifier On and Temporary Bond Close-Circuited, V2(on, icc)

Units

Amps, Milliamps

Volts, Millivolts

Volts, Millivolts

Volts, Millivolts

Volts, Millivolts

Amps, Milliamps

Volts, Millivolts

Volts, Millivolts

Resistance Bond Sizing

Outputs

Required Permanent Bond Size, B

Permanent Bond Current On, I(b,p on)

Permanent Bond Current Off, I(b,p off)

Final Potential of Line 1 at Crossing with Rectifier On and Permanent Bond Close-Circuited, V1(on f,cc)

Final Potential of Line 1 at Crossing with Rectifier Off and Permanent Bond Close-Circuited, V1(off f,cc)

Final Potential of Line 2 at Crossing with Rectifier On and Permanent Bond Close-Circuited, V2(on f,cc)

Final Potential of Line 2 at Crossing with Rectifier Off and Permanent Bond Close-Circuited, V2(off f,cc) Units Ohms, Milliohms Amps, Milliamps Amps, Milliamps Volts, Millivolts

Volts, Millivolts

Volts, Millivolts

Volts, Millivolts

AC Current Density Approximation

Options: Current Density, Soil Resistivity, AC Voltage

Inputs

Current Density Soil Resistivity AC Voltage *Holiday Surface Area*

Outputs

Current Density Soil Resistivity AC Voltage **Units** Amps/Meter² , Amps/Foot² Ohm-Centimeter, Ohm-Foot Volts, Millivolts *Centimeter*² , *Inch*²

Units

Amps/Meter², Amps/Foot² Ohm-Centimeter, Ohm-Foot Volts, Millivolts

* Pick two Inputs *(excluding Holiday Surface Area)* to solve for the third input as the Output

AC Current Density (amps/meter²)	Condition
i _{ac} < 30	No AC Corrosion
30 < i _{ac} < 100	AC Corrosion Unpredictable
i _{ac} > 100	AC Corrosion Expected

Soil Arcing Distance

Options*: Arcing Distance, Soil Resistivity, Fault Current

Inputs	Units
Arcing Distance	Meters, Feet
Soil Resistivity	Ohm-Centimeter, Ohm-Foot
Fault Current	Kiloamps, Amps
Outputs	Units
@ Soil Resistivity <= 10,000 Ohm-C	Centimeter
Arcing Distance	Meters, Feet
Soil Resistivity	Ohm-Centimeter, Ohm-Foot
Fault Current	Kiloamps, Amps
@ Soil Resistivity >= 100,000 Ohm-	Centimeter
Arcing Distance	Meters, Feet
Soil Resistivity	Ohm-Centimeter, Ohm-Foot
Fault Current	Kiloamps, Amps

* Pick two Inputs to solve for the third input as the Output

© ell ENGINEERING

DC Attenuation Calculations

Options: Sending End Current¹, Receiving End Current²

Inputs

Sending End Current¹

Receiving End Current²

Unit Linear Resistance

Unit Conductance to Earth

Maximum Number of Unit Lengths from Sending End Number of Unit Lengths from Sending End

Units

Amps, Milliamps

Amps, Milliamps

Ohms/Unit Length, Milliohms/Unit Length

Siemens/Unit Length, Millisiemens/Unit Length

Number

Number

DC Attenuation Calculations

Options: Sending End Current ¹, Receiving End Current ²

Outputs

Number of Units from Receiving End

Attenuation Constant

Characteristic Resistance

Resistance Looking into Open Line

Sending End Potential ¹

Potential Knowing Sending End Potential ¹

Potential Knowing Sending End Potential / Sending End Potential ¹

Current Knowing Sending End Current¹

Receiving End Potential²

Potential Knowing Receiving End Potential²

Current Knowing Receiving End Current²

Units Number Number Ohms, Milliohms Ohms, Milliohms Volts, Millivolts Volts, Millivolts Percent (%)

Amps, Milliamps Volts, Millivolts Volts, Millivolts Amps, Milliamps

Miscellaneous Calculations

Ohm's Law Multiple Resistances Calculation Pythagorean's Theorem

Ohm's Law

Options*: Voltage, Current, Resistance

Inputs Voltage, V Current, I Resistance, R

Outputs

Voltage, V Current, I Resistance, R

Units

Volts, Millivolts Amps, Milliamps Ohms, Milliohms

Units

Volts, Millivolts Amps, Milliamps Ohms, Milliohms

$V = I^*R$ I = V/RR = V/I

* Pick two Inputs to solve for the third input as the Output

Multiple Resistances Calculation

Inputs

Resistance 1 Resistance 2 Resistance 3 Resistance 4 Resistance 5

Outputs

Series Resistance Parallel Resistance Units Ohms, Milliohms Ohms, Milliohms Ohms, Milliohms Ohms, Milliohms

Units Ohms, Milliohms Ohms, Milliohms

Pythagorean's Theorem

Inputs	Units
Length, A	Number
Height, B	Number
Outputs	Units
Hypotenuse, C	Number

Extras

Report Templates Cathodic Protection Design Packet Details Combine Calculation Screenshots

Cathodic Protection Design Packet Details

Combine Calculation Screenshots

*Feature Only Available on iPhone App

© ell ENGINEERING

H
 Pipelins Current
 Requirement

Deep Anaple Group Residence

• ... •

Rectfler Witepe

10

1.00

III
 III
 III
 III
 Inciting
 Recriptive
 Voltage

Annual and a second sec

de la constanción de la constanci de la constanción de la constanción de la constanc
Basic Calculator & Information Sheet

9:55 🛇			₹41	
5				
			8×7	
			56.0	
AC_	>	%	÷	
7	9	0		
	5	5		
	2	2	H	
		3	H	
Ľ				

ell Engineering

© 2024